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The problem of the elastic equilibrium of an infinite isotropic layer is 

treated in detail in the book by Lur’e [l], who has used a method of 
solution based on the application of special differential operators. 
Knowing the solution for an infinite layer, one can readily obtain the 

solution for a finite thick plate, if the exact boundary conditions on 

the lateral surface are replaced by approximate ones, integral or aver- 
aged. 

In this article we consider the problem of equilibrium of an elastic 
layer which possesses the anisotropy of a particular kind, namely trans- 
verse isotropy; the general and the particular solutions are constructed 
by a method analogous to that of Lur’e. 

1. The general equations and formulas for a transversely 
isotropic medium. Suppose we have an elastic, homogeneous, trans- 
versely isotropic body, which follows the generalized Hooke’s law and 
which undergoes small strains under the applied external loads. It is 
well known that the anisotropy of such a body is characterized by the 
existence of a plane of isotropy at every point or, which is the same, 
by the existence of an axis of elastic syrsnetry of an infinitely high 
order @, p.l?Zj . ‘Ihe problem of the elastic equilibrium of a trans- 
versely isotropic medium is of definite interest in mining engineering; 
it is natural to attribute this kind of anisotropy (at least in first 
approximation) to the sedimentary rocks - sandstones, siltstones, 
phyllites and others, in which the planes of strata, due to their forma- 
tion and structure, are the planes of isotropy. 

If the z-axis is directed normally to the planes of isotropy and if 
the common designations for the components of stress and strain are used, 

the the equations expressing generalized Hooke’s law can be written down 
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as follows: 

E, = - WY) - $$br, 1 
ruz = - $2 Gl 

Here, E, E, are Young’s moduli fog the extension-contraction in the 
plane of isotropy and in the transverse direction, v, vlt v2 are 
Poisson’s ratios, G, G, are the shear moduli for the planes of isotropy 
and those normal to them. Out of the seven elastic constants only five 

will be independent, since 

E E 
% = Vl J?g, G = z(i+v) 

Let us introduce the designations 

a,=-& da=& 1)s = ala j- @,a 

(Da is the Laplacian operator for a function of two variables 

Here, sl, s2 are the rodts of the equation 

Pls”L -Jr (P - al) sa + 01 = 0 WI 

As is well known, the stress components and the Projections of the 
displacement in a transversely isotropic medium, in the general case of 
deformation, are expressed by means of two functions g, and F, which 
satisfy the equations 131 

‘Se general expressions for the stresses and displacements have the 
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form 

6~ = - 2@44JJ + -& ( 2Gds2 - aD2 + p a$) F, 

*II = 2Gd16,(p + ; (2Gd,2 - aD2 + pg) F, 
0, = -&Da + pIa;) F 

w 

IT XY = G (d,2 - 8;) cp - $- (2Gd,d,F) 

z xz = - GI & (32~4 + 4(aD2 -P;)F 

z In = G&@,cp) + a2(aD2 - P$-)F (1.8) 

u = - 824(4F), 2, = al’p -&(d2F), w =(yD2 +h;)F (1.9) 

2. The elastic equilibrium of an infinite layer. Consider 
an infinite, elastic, transversely isotropic, layer of constant thick- 
ness h, whose top and bottom planes are parallel, which is in equilibrium 
under the forces applied to its boundary surfaces; we shall disregard the 
body forces. It is assumed that the planes of isotropy at any point are 
parallel to the middle plane. Taking the latter to be the xy plane, we 
have the equations of generalized Hooke’s law in the form (1.1). 

Any loading applied to the surfaces can be broken up into two parts: 
A) the load synzzetrical with respect to the middle plane and B) the skew- 
symmetrical load. ‘lhe load of type A causes deformations whose character- 
istic is that the middle surface remains plane and undergoes extension 

or contraction; the loads of type B are associated with deformations in 
which the middle surface undergoes bending in such a manner that its 
linear elements do not change their length. Following Lur’e 11, p.1481 
let us call the problem associated with the symnetrical loads the prob- 
lem of extension-contraction, and the one corresponding to the skew- 
synznetrical loads - the problem of bending. The solutions of both prob- 
lems will be constructed by means of functions cp and F in the form of 
series arranged by the positive powers of z. We shall look for solutions 
of bations (1.6) in the form 

k=o 

F = ; Fk(% y)zk 
k=o 

(2-f) 

Substituting the Fxpressions (2.1) into the Fquations (1.6) and set- 
ting the coefficients of identical powers of z equal to zero, we obtain 
the recurrence differential equations for the functions 9k and Fk with 
different indices. 

From these equations, the coefficients of qk can be expressed in 
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terms of two arbitrary functions ~a, q,,’ of the variables x and y, and 

the coefficients of Fk - in terms of four functions F,, F,, F, ‘, F, ‘. 

It has been proved that the parameters .sl and s2 can be real or com- 
plex, but cannot be pure imaginary numbers 141. If they are different, 
then the final expressions for 9 and F can be written in the following 
compact form 

cp = cos s,,zD. ‘p. + sin s,zD m ‘p,,’ (2.2) 

F = cos QZD - F1 + cos s,zD. F, + sin s,zD - F,’ + sin s,zD m F,’ 

Here cos s,zD and sin s@ are the di. ‘erential operators of the form 

cosskzD = I- 
sk=zw S~%‘D 
2! +,,-... 

Sk323D3 
(2.3) 

sin sg.D = skzD - T+T-... 

From the formulas (1.7) to (1.9) we find ,I IJJ 
the expressions for the stresses and dis- Fig. 1. 
placements, which contain the same operators 
(2.3). In the problem of extension-contraction 
the stress distribution will be symnetrical with respect to the xy plane 
and we can set in advance q,,’ = F, = F, = 0; in the bending problem q,, = 
F,’ = F, ’ = 0. From there on .we shall always assume that s1 # s2. In the 
case of equal parameters all the formulas will be somewhat more compli- 
cated, but we shall not look into it, since it can be reduced to the 
case of an isotropic layer, if a new variable z’ = slz is introduced. On 
the other hand, the solution of any particular problem for s1 = s2 can be 
obtained from the solution for the case of unequal parameters by transi- 
tion to the limit. 

3. The extension-contraction of a layer. Suppose that the 

boundary planes are subjected to given normal and tangential forces dis- 
tributed symmetrically with respect to the middle surface (Fig. 1). 

We designate the magnitudes of the external forces by p, TV, -r2; the 

normal forces will be taken as positive if they cause tension; for the 
tangential forces we adopt the sign convention which is generally used 
for shear stresses. 

lhe stresses satisfy the boundary conditions 

IT ax = * fl, % = f%, az = p for __+h z=+ (3.1) 
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Let us introduce the designations 

A = - D3 [sl (a + /3s12) cos s,zD . F,’ +s, (a + fhz2) cos s,zD . F,’ 1 

B = D (sl cos s,zD .F,’ + s2 cos *s,zD . F,‘) (3.2) 

From the formulas (1.7) to (1.9), on the basis of the expressions 

(2.2)) we obtain 

0, = - 2G&d, cos s,zD - cpo + 4 -I- 2Gd2*B 

oy = 2Gd,d, cos s,zD .qo _I- A + 2Ga12B (3.3) 

IS, = D3 [s, (a1 - fi1s12) cos s,zD .Fi’ + s? (a1 - ~1~22) cos s2zD *Fz’l 

z ry = G (a,2 - a,y cos s,zD *‘PO - 2Ga,a,B 

z,, = G,soa2D sin s,zD . ‘p. + a,D2 [(a + ps12) sin srz D. F,’ t- 

+ (a + ps22) sin s,zD. F,‘] 

z #.z = - G,s,a,D sin sozD .‘po + a2D2 [(a + f3s:) sin slzD SF,’ -i- 

f (a f fJs2’) sin s,zD~f’,‘l (3.4) 

u=- a, cos S,ZD .‘po - a,B, 2; I= a, cos s,zD . ‘Fo- a,B 

w = D2 [(y - ds12) sin s,zD. I;,’ -& (y -- h2”) sin s2zD. F,‘] 
(3.5) 

Satisfying the conditions (3.1) for TV, F,‘, F,’ we get the equations 

G,soa2D sin F .‘po + (a + fbc) a,D2 sin ‘9 .I;,’ + 

+ (a -t fist) a,D2 sin SF *F,’ = T, 

- G,s,a,D sin ‘9 . ‘p. + (a + Bs~) d2D2 sin ‘9 . F,’ + (3.6) 

+ (a + ps22) a2D2 sin ‘9 .Fa’ = ~2 

sr (a, - pIs12) D3 cos ‘9 . F,‘+ s2 (al - 13~2~) D3 ~0s “q .F2’zp 

We shall solve these equations in the same way as in the correspond- 
ing case of an isotropic layer [l, pp.153-1561. Let us form the operator- 
determinant of the system (3.7) c and the minors ‘->ij ‘; we get 

Q’ =.= F D”Q (3.7) 

where 

Q = Dssin F [(sr $ s2) sin (sr - s2) ‘g + (sl 7 s2) sin (sl $ s2) y] (3.8) 
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We shall not state the expressions for the minors; their form is 

clear (see the system (3.6)). Furthermore, let us introduce the three 
stress functions, requiring that they satisfy the equations 

Q’X1’ = Tl, Q'x2‘ = ~2, Q'x'a = P (3.9) 

For that purpose we have to set 

‘PO = Qll’Xl’ + QZl’X2’ + QSl’XS’ 
FI’ = Qdxi + Qzz'xz' + Qdxs 
J’s’ = Qu'xl' + Qm'xz' + Qss'xs 

Now, we introduce the new functions 

xr = + D6xk’ (k = 1, 2, 3) 

‘These functions satisfy the equations 

QxI=-& Qxz = -& Qxs = $- 

(3.10) 

(3.11) 

(3.12) 

Plus ) we obtain the final expressions 

Q 
‘po = sODs sin s&D / 2 (~2Xl--lx2> 

F,' = G,n & sin 9 [s2 ( a1 - p1s2”) cos ‘9 (&xi + ~9~~s) - 

- (a + ps,z) D sin ‘9 x8] (3.13) 

F2’ = G,n & sin y [ - Sl(% - PlSl") cosS$%%x1+~2x2~ + 

+ (a + ~~12) Dsin 9 xz] 

These functions have to be substituted into the formulas (2.3) to 
(3.5). The expressions for stresses and displacements are thus obtained, 
but we shall not state them here. Let us only point out that all the 
differential operators are commutative and hence no complications can 
arise in the substitution. 

4. Particular cases of extension-contraction. All the 

formulas and equations are considerably simplified in the two particular 

cases of loading. 

c ,ase 1. Only normal forces are acting on the surface (TV = TV = 01. 
Since x1, xp satisfy the homogeneous equations, they can be set equal to 
zero. Instead of xJ let us introduce a new stress function 
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(4.1) x= DsinFX, 

This function satisfies the equation 

D (sl + s2) sin (sl - s2) ‘g + (sl - sz) sin (sl + s2) y] x = $ 
[ 

(4.2) 

We get q0 = 0 
(4.3) 

F,' = - G,n (a + psz) & sin? x, F,’ = G,n (a + &s)&sinsF~ 

Case 2. 'Ihe normal forces are absent and the tangential forces have a 

potential, i.e. 

p = 0, q = air, z2 = d,z 
(4.4) 

\Ve introduce a new function x*, setting 

alx+ 
x1 = Dsins&D/2’ 

aax* 
%a= Dsins&Di2 ’ xs =o (4.5) 

'lhe function x* satisfies the Equation (4.2) in which T is substituted 

for p. 

5. Bending of a layer. Let a skew-synrnetric loading with com- 

ponents f q, tl, tq per unit area, be given on the boundary surfaces of 
the layer (Fig. 2). In this case we have the boundary conditions 

_l__&___ 
t O ; 

3 

_ ^_ --F t, --- 

2 
P 

Fig. 2. 

z xs = t,, ryz = t2, (Jz= fq 

‘h for z=*~ (5.1) 

Introducing concise designations 

A, = D3 IsI (a + fhc) sin s,zD .F, + 

+ sz (a + ps:) sin s,zD . F,l (5.2) 

B, = - D (sl sin s,zD . F, f s,sin s,zD - F,) 

we put the formulas for stresses and displace- 

ments in the following form 

ux = - 2G8ias sin s,zD .q+,’ + A, + 2Gd,‘B, 

uy = 2Ga,d, sin sozD .‘po’ + A, + 2GalaB, (5.3) 

U, = - D3 [s, (a, - fllslz) sin s,zD .F, + s2 (a, - ~lsZz) sin s,zD .F,] 
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txu = G (a, - dz2) sin s,,zDq+,' - 2Gd,~?,ll~ 

IT xz r= - G,s$,D cos sozD.(po' + 8,Da [(a + gs:) cos s,zD.F, + (5.4) 

+ (a + bs2") cos s,zD.F,l (5.5) 

*n = G,s,d,D cos sozD.cpo' + cV2Da [(a + Bsl") cos slzD.F, + 

+ (a + f3s~)cos s2zD*F,J 

Z&= - 13% sin sozD~~o' - d,B, 

u = i3, sin sozD~cp,' - @3, 

w = Da [(y - 6s,2)cos s,zD.F, + (y -8s,B)cos s2zD.Fel 

Satisfying the boundary conditions (5.11, we obtain a system of equa- 
tions for the unknown functions, Q~‘, F,, F,, which we solve in exactly 
the same manner as in the case of extension-contraction; as a result, all 
the quantities will.be expressed in terms of the three stress functions, 
which satisfy the equations 

(5.6) 

Here 

Qr= DGOS~[ (sl + s2) sin (sl - s2) y - (sl - sJ sin (sl + s2) y] (5.7) 

The final form of the formulas will be 

Ql 
6 = - s,D9cos s,hD / 2 (82% -492) (5.8) 

F 1= G1n s&D 
-I)3 cos2 E 

s2(aI - prq2) sin 2 %thD (h*r + 8,921 + 

+ (a + ps22)D COSF-$2] 

Fa = g coss~[s,(a, - PlsS2)sin SF (&$I + 82%) + 

+(aS'ps,2)DcosSyq 
2 

6. Particular cases of bending. In the problem of bending we 

also can point out two particular cases which lead to considerable 
simplifications. 

Case 1. 3ending by a normal load. 
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Let tl = tp. ?hen we can set vyl = vyz = 0 and introduce a new stress 
function 

(6.1) 

‘Ihe function v satisfies the equation 

D (~1 + s2) sin (sl - s2) ‘+ - (sl 
C 

- s2) sin (sl + s2) ‘+] $ = & (6.2) 

In this case II+,’ = 0 

F2 = G&r (a + ps12) cos ‘?I$ (6.3) 

Case 2. The surfaces are subjected to tangential forces which have a 

potential 

q = 0, t, = d,t,, t, = a,t (6.4) 

In this case pa’ = 0 

F1 = - g ss (ai - p1ss2) sin ‘9 $,” 

F2= c$s1(a1-P1s12)sinq$* 
(6.5) 

For the function y* we get the Equation (6.2) in which q = t. 

7. The homogeneous solutions and the problem of equilibrium 
of a thick plate of finite dimensions. ‘Ihe solutions of the equa- 
tions, which are satisfied by the stress functions when the loads on the 
planes z = f h/2,are absent, are called the homogeneous solutions. IJsing 
the homogeneous solutions one can obtain the stress distribution and dis- 
placements in a thick plate of finite dimensions, whose plane surfaces 
are subjected to an arbitrary load, which can always be broken up into a 
symnetric and a skew-symmetric part with respect to the middle plane. 

Setting in (3.12) and (5.6) p = TV = TV = 0 and q = tl = tq = 0, we 
obtain for the functions xk and \yk the homogeneous linear equations of 

infinitely high order, corresponding to the form of the operators Q and 
Q1. However, if the conditions on the lateral surface (i.e. on the edge) 
are not satisfied exactly, and if, instead, we require that only the 
averaged or integral conditions be satisfied, as in the theory of thin 
plates, then it is sufficient to take for xk and yk the particular solu- 
tions of the Equations (3.12) and (5.6), namely the biharmonic functions. 

The derivation of the formulas for the stresses and displacements, 



Elastic equilibriur of an isotropic layer and a thick plate 1035 

which correspond to the homogeneous solutions, is completely analogous 
to the derivation for an isotropic layer [l, pp.ZOZ-2051 , and hence we 
are not going to dwell on it here. 

A,) A symmetrical stress distribution. Taking the functions xk to be 
biharmonic, we obtain at any point 

z xz = % =a,=0 

Let us introduce a new biharmonic function F(x, y), setting 

(7.1) 

(7.2) 

axxr = &?xz = - 
F 

ZGrs, (~~8 - sa2) (1 + v) h ’ 
(3--v)~/G1--Wv2 s F 

X3 = 12EV~(S$--S&(1 -v) 0 

thus we arrive at the well-known formulas which describe the state of 
plane stress of a transversely isotropic plate L.51 

where 

0, = a2vlr a, = d12F1, zx,, = - d,d,F, (7.3) 

F, = F --/- 2&P) (Z --2P2F 174 

R) A s~~~-sy~tr~ca~ stress distribution. We may set yr = yy2 = 0 and 
consider the function y to be biharmonic. 

Let us introduce a new bihannonic function w,,, related to q~ in the 
following way 

Then we obtain the well-known relations lSl, which are valid for 
bending 

u = - zapi1, v = - za,w,, % w =wo -I- 2 2(*-g "oG.0 (7.6) 

Here wa is the deflection of the middle plane 

wl = Wo f 2(& (I- y2) 
E [!g_(l- gy]~lwo (7.7) 

We will not state the formulas for the stresses. In order to solve 
the problem of equilibrium for a plate of finite dimensions, we should 

first of all decompose the loading into a symmetric and a skew-symmetric 

part and determine the corresponding functions xk and vk for an infinite 

layer. After that we find the forces and displacements which recur on 
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the lateral surface, and then superimpose the homogeneous solutions of 
the types A and B, choosing them in such a manner that the necessary 
averaged (integral) conditions are satisfied on the lateral surface (on 
the edge). 

In this formulation each of the two problems A and R is reduced to the 

determination of a function, biharmonic in the domain of the plate. 

8. Ihe particular solutions of the equations for the stress 
functions. Let us consider the cases in which only normal loads p and 
q are acting on the plane surfaces, and let us look into some special 
cases of loading, The stress functions x and y satisfy the following 
equations: 

the problem of extension-contraction 

D -(S1 + s2) sin (sr - S2) ‘+ + (Sr 
1 

-s,)sin(s,+~,)~!flX=k (8.1) 

the problem of bending 

If the layer is isotropic (sl = s2 = 1) then the Equations (8.1) and 

(8.2) must be replaced by different ones 11, pp.lSS-1571 

(8.3) 

The question of finding the particular solutions of the equations for 

the isotropic layer has been treated in suffi- 
cient detail in Lur’e’s book I.11 , 

In this connection, all the arguments re- 
- lated to the isotropic layer can be applied, 

without any essential changes, to the case of 
a transversely isotropic layer, and therefore 
we can here limit ourselves to outlining the 
solutions for the two most typical cases of 
loading. 

1. The loading is a polyharmonic function f 

of the coordinates x, y, i.e. it satisfies 
the equation Fig. 3. 

Pp = 0 or LPg = 0 W-4) 

In this case x is an n + 1 - harmonic function and v is an 
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n + 2 - harmonic. 

In particular, if p and q are polynomials of the power n with respect 

to n and y, then x is a polynomial of the power II t 2, and v is a poly- 

nomial of the power n + 3. In looking for x and v in the form of poly- 

nomials of respective powers with indeterminate coefficients, we compare 

the terms on the left- and right-hand sides. lhus, for the coefficients 

we obtain equations whose number is lower than the number of the unknowns. 

Consequently, some of the coefficients may be chosen arbitrarily, for in- 

stance, they may be set equal to zero. 

2. ‘Ihe loading satisfies the equation of free vibrations of a membrane, 

i.e. 

D2p = - m2p or Daq = - rneq (171 = const) (8.5) 

‘Ihe functions x and q~ are defined in the form 

xc 1 P -- 
&m (~1 + ssjsW(s1 - d mh / 21 + (SI - sSsW(sl + d mh / 21 (8.6) 

+_-A_ 
&m(sl -I- sz)sih[(sl -ss)mh/2] ~(sl-ss)sinh[(sl +ss) mh/2] 

(8.7) 

Example. An infinite transversely isotropic layer of thickness h/2 

rests on a smooth, perfectly rigid foundation and is compressed by a 

normal load, distributed on its upper surface (Fig. 3). 

Suppose that the friction on the contact surface is 

i.e. 

z x2 = T !,Z -0, w#=O when z=O 

Then the solution of this problem will be identical 

for a layer of thickness h, subjected on both sides to 
metrical with respect to the middle plane. 

negligibly small, 

(8.8) 

to the solution 

given forces, sym- 

Let us assume that the loading can be represented by a Fourier integral 

P= 11 Q (a, 6) cos ax cos PIJ~Z d3 (8.9j 
. 

II 0 

where 

p cos a: cos pq dg dq (8.10) 

0 0 
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The product cos ax cos py, obviously, satisfies the Equation (8.5). 
where m = J (a2 + p2, ( and hence x is given by the formula obtained from 
(8.6) by performing the summation, f. e. integration 

m (Q+Sz)s~h[(ei- SS) mh /2] + (sl-.sa)~[(sr+sz)mh/z] da dp 03.11) 
0 0 

Let, for instance, the compressive loading be uniformly distributed on 
the area of a rectangle whose sides are 2~1. 2~~. Designating the result- 
ant of that loading by P, we have 

P 

p = - h&IQ 

inside the rectangle, and p = 0 at other points. Thus we obtain 

Q=- ’ -sin as1 sin 3~ n%,s*C# 

(8.12) 

(8.13) 

Letting ~1 and ~2 tend to zero (at constant P), we obtain the solution 
for the case of a concentrated load applied at the origin 

(8.14) 
coo0 

P 

cs 

1 

x=* 

cos az cos py 

m (sl + 9) si* [(sx - sa) mh / 21 + (sr - sa) sinh f (SI + ~2) mh / 21 da dp 
0 0 

As in the corresponding case of an isotropic layer [l, p. 1751, the 

integral (8.14) diverges as n2, Since the denominator becomes equal to 

zero for I = 0; however. the stresses and displacements. found by means 
of the function x from the Formulas (4.31, (3.3), (3.4) and (3.5) are 
expressed by convergent integrals. 
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