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The problem of the elastic equilibrium of an infinite isotropic layer is
treated in detail in the book by Lur'e [1}. who has used a method of
solution based on the application of special differential operators.
Knowing the solution for an infinite layer, one can readily obtain the
solution for a finite thick plate, if the exact boundary conditions on
the lateral surface are replaced by approximate ones, integral or aver-
aged.

In this article we consider the problem of equilibrium of an elastic
layer which possesses the anisotropy of a particular kind, namely trans-
verse isotropy; the general and the particular solutions are constructed
by a method analogous to that of Lur’'e.

1. The general equations and formulas for a tramsversely
isotropic medium. Suppose we have an elastic, homogeneous, trans-
versely isotropic body, which follows the generalized Hooke's law and
which undergoes small strains under che applied external loads. It is
well known that the anisotropy of such a body is characterized by the
existence of a plane of isotropy at every point or, which is the same,
by the existence of an axis of elastic symmetry of an infinitely high
order [2, p.172). The problem of the elastic equilibrium of a trans-
versely isotropic medium is of definite interest in mining engineering;
it is natural to attribute this kind of anisotropy (at least in first
approximation) to the sedimentary rocks - sandstones, siltstones,
phyllites and others, in which the planes of strata, due to their forma-
tion and structure, are the planes of isotropy.

If the z-axis is directed normally to the planes of isotropy and if
the common designations for the components of stress and strain are used,
the the equations expressing generalized Hooke’s law can be written down
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as follows:
1 v 1
&x = - (65 — v&y) — "E‘E{ Sz, Tvz = g Yoz
i v 1
eu=7(mvcx+ Sy) — -E%Gz, Txz= "&‘;sz (1.1)
Vv 1 1
ez=—-"gg'(ﬁx+ﬁy)+*g;5z, Yoy = ¢ Txy

Here, E, EI are Young's moduli for the extenmsion-contraction in the
plane of isotropy and in the transverse direction, v, v,;, v, are
Poisson’s ratios, G, G, are the shear moduli for the planes of isotropy
and those normal to them. Out of the seven elastic constants only five
will be independent, since

E E
Vz”'\’li-;w G=m (12)
Let us introduce the designations
i 3
31=‘5;: 83:‘3‘3}‘”» D= 9% + 622 (1.3)

(D? is the Laplacian operator for a function of two variables x and y)

H=FEvi+ G {1 —v — 2v;vy)

o= 266G, (1};"‘ ViVs) , B - Gle{‘Vx , g = 2(}1 ~'~[;‘1Vz
alazGE.‘l_——_G_leI{—(l.:ty).’ BlzGlEliEv, 62011——\7;2‘\71‘\)3
G — a —BY — 4B,
$g == V-—l" s S1p7 ‘/ u—B+ V(z?l B)% — 4aB;
ne 2 _H
T asy(afy F i) sisEiGiG (1.4)
Here, s,, s, are the roots of the equation

Bt + B—oa) s +a=0 (1.5)

As is well known, the stress components and the projections of the
displacement in a transversely isotropic medium, in the general case of
deformation, are expressed by means of two functions ¢ and F, which
satisfy the equations [3]

rremlo=o. (Fram) G eamlr=o o

The general expressions for the stresses and displacements have the
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form
0c = — 260,049 + 5 (2G0;* — aD* + p o) Fa , ,
oy = 260,9,9 + 5 (260 — aD? -+ Bors) Fs o= g (D? + 315;2(2_1%
Ty = G (0 — 0;) @ — —= (2G3,0,F)
Ta= — Gy 5 (09) + 0,(«D* —B ) F
T = Gi o (019) + 0, (aD? —B o7 ) F (1.8)
U= — 09— (0F), v=0p ——=(BF), w= (vD? +a£§)p (1.9

2. The elastic equilibrium of an infinite layer. Consider
an infinite, elastic, transversely isotropic, layer of constant thick-
ness h, whose top and bottom planes are parallel, which is in equilibrium
under the forces applied to its boundary surfaces; we shall disregard the
body forces. It is assumed that the planes of isotropy at any point are
parallel to the middle plane. Taking the latter to be the xy plane, we
have the equations of generalized Hooke’s law in the form (1.1).

Any loading applied to the surfaces can be broken up into two parts:
A) the load symmetrical with respect to the middle plane and B) the skew-
symmetrical load. The load of type A causes deformations whose character-
istic is that the middle surface remains plane and undergoes extension
or contraction; the loads of type B are associated with deformations in
which the middle surface undergoes bending in such a manner that its
linear elements do not change their length. Following Lur'e [1, p.148]
let us call the problem associated with the symmetrical loads the prob-
lem of extension-contraction, and the one corresponding to the skew-
symmetrical loads - the problem of bending. The solutions of both prob-
lems will be constructed by means of functions ¢ and F in the form of

series arranged by the positive powers of z. We shall look for solutions
of Equations (1.6) in the form

oo o0
o= %z, 92  F= 3 Fi(z,y)s* (2.1)
k=0 k=0
Substituting the Fxpressions (2.1) into the Equations (1.6) and set-
ting the coefficients of identical powers of z equal to zero, we obtain
the recurrence differential equations for the functions ¢, and F) with
different indices.

From these equations, the coefficients of @, can be expressed in
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terms of two arbitrary functions ¢,, ¢, of the variables x and y, and
the coefficients of F, — in terms of four functions F,, Fz' Fl’, FZ'.

It has been proved that the parameters s; and s, can be real or com-
plex, but cannot be pure imaginary numbers [4]. If they are different,
then the final expressions for ¢ and F can be written in the following
compact form

@ = €08 $yz0) - @y - sin so2D - @y’ (2.2)
F = cos 2D -Fy + cos 82D - Fy + sin $,z2D - F,’ 4 sin 82D Fy’

Here cos s,zD and sin s zD are the di. "erential operators of the form

2,3 4,4
5,222 02 s, 2408

cossgzD =1— s T .
2.3 ! )
. 5, 52308 8,538 ( ) I 0!—"4‘—_‘:"
sms,,zD=skzD—-—r+—T-—... 21 | —
From the formulas (1.7) to (1.9) we find z p
the expressions for the stresses and dis- Fig. 1.

placements, which contain the same operators

(2.3). In the problem of extension-contraction

the stress distribution will be symmetrical with respect to the xy plane
and we can set in advance ¢," = F| = F, = 0; in the bending problem ¢, =
F," =F," =0, From there on we shall always assume that s, # s,. In the
case of equal parameters all the formulas will be somewhat more compli-
cated, but we shall not look into it, since it can be reduced to the
case of an isotropic layer, if a new variable z' = s,z is introduced. On
the other hand, the solution of any particular problem for s; = s, can be
obtained from the solution for the case of unequal parameters by transi-
tion to the limit.

3. The extension-contraction of a layer. Suppose that the
boundary planes are subjected to given normal and tangential forces dis-
tributed symmetrically with respect to the middle surface (Fig. 1).

We designate the magnitudes of the external forces by p, T, T,; the
normal forces will be taken as positive if they cause tension; for the

tangential forces we adopt the sign convention which is generally used
for shear stresses.

The stresses satisfy the boundary conditions

Ter = + Ty Ty = + Ty, 0, =p for z =+
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Let us introduce the designations

A= —D3[s (@ +Ps;?) cos s,2D-F|" 45, (o + PBsy?) cos spzD - F,']
B =D (s, cos 8,zD-F," + s, cos s,2D - F,’) (3.2)

From the formulas (1.7) to (1.9), on the basis of the expressions
(2.2), we obtain

Oy = — 2G08,0, c0s 542D -9, + A + 2Gd,°B
0, = 2G9,0, cos sezD-¢o + A +- 2G0,*B 3.3)
0, = D3 [s, (2, — By5,2) cos s,2D - Fy" 4 s, (ay — B;5,%) cos s,2D - Fy']
Ty = G (0,2 — 052) cos 502D -y — 2G0,0,B
Txy = Gy500,D sinsgzD - @, + 0, D% [(ot + Bs,?) sins,2D - Fy' -
+ (o + Bsy2) sin spzD - Fy']

Ty = — G180, D sin 52D ¢ + 9,D% [(o0 + Bsy?) sin 52D -Fy" -
+ (o -+ Bsy?) sin s,2D - F,' | (3.4)
u = — 0, cos sezD -9y — 0,8, v == 0, c0s SozD - go— 0,8

w=D? [(y — 0s,%) sin 8;2D-F," -+ (Y — 8s,7) sin sy2D - F,’]

Satisfying the conditions (3.1) for ¢,, F,’, F,’" we get the equations

G15¢05D sin —— °h ‘o + (o0 4 PBs,?) 9,D? sin S‘hD F/ +
+ (oc + psp?) 0,07 sin L Fy = 1,
— G380 2) 3,D? si (3.6)
+ (o + Bs,?) 9,D% sin sng Fy = 1,
sy (ay — By5:1%) D? cos =~ s‘hD Fy 4 sy(0ty —By5,2) D3 cos ”hD Fy =p

We shall solve these equations in the same way as in the correspond-
ing case of an isotropic layer {1, pp.153-156]. Let us form the operator

determinant of the system (3.7) 2’ and the minors QIJ ; we get
0" = 1% peg (3.7)
where

Q = D?sin —— h [(sl - 8,) sin (s; — s3) h—zl—)— + (81— 8p) sin (81 -+ $5) %] (3.8)
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We shall not state the expressions for the minors; their form is
clear (see the system (3.6)). Furthermore, let us introduce the three
stress functions, requiring that they satisfy the equations

Q% = T, Q%' = Ts Q¥s=0p (3.9
For that purpose we have to set
@0 = Qu'%a’ + Qu'%e’ + Qa'%s’
Fy' = Qu'% + Qu'ta’ + Q%5 (3.10)
Fy = Qw't’ + Qas'xs’ + Qss'Ys’

Now, we introduce the new functions

Wi = > Doy, (k=1,2,3) (3.11)
These functions satisfy the equations
QXI = 'Z'T;}l‘ y QXZ = %i— ’ QX3 = Gl;. (3‘12)
Thus, we obtain the final expressions
=% oy, —0
Po = seD3 sin sghD [ 2 ( 2%1 1X2)
, . D hD
Fy' = Gn 'jl)—z sm% [32 (o — B15,%) cos 8‘22— (01%1 -+ OgX2) —
— (o + Bsy?) Dsin i’—hzg Xa] (3.13)

, 1 . sehD hD
Fy' = Gin 4 sin SOT [_ $1 (ot — B15;%) cos S_l?_ (O1%1 + Oa%s) +

+ (@ + Bsy?) Dsin 22 x|

These functions have to be substituted into the formulas (2.3) to
(3.5). The expressions for stresses and displacements are thus obtained,
but we shall not state them here. Let us only point out that all the

differential operators are commutative and hence no complications can
arise in the substitution.

4. Particular cases of extension-contraction. All the

formulas and equations are considerably simplified in the two particular
cases of loading.

Case 1. Only normal forces are acting on the surface (r, = 1, = 0).

Since x;, X, satisfy the homogeneous equations, they can be set equal to
zero. Instead of x; let us introduce a new stress function
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¥ = Dsin s°}2lD Y3 (4.1)

This function satisfies the equation

. hD
D [(31 + $y) sin (s, — 32) + (51— g} sin (s + $3) hf] x= GL; (4.2)
We get 9, = 0 (4.3)
Fy' = —Gpn (o + Bs)?) o5 Dz sin —5— Sz};D X Fy = G (@ + Ps® )Tﬁ‘sm i';l")x

Case 2. The normal forces are absent and the tangential forces have a
potential, 1i.e.

p = 0, T]' = 011, 1,'2 = 62T (4‘4)
We introduce a new function x*, setting
61x _ azx# _
1= BemsaDr2’ %= Dsmsgpiz: X =0 (4.5)

The function x* satisfies the Equation (4.2) in which 7 is substituted
for p.

5. Bending of a layer. Let a skew-symmetric loading with com-
ponents t g, t;, t, per unit area, be given on the boundary surfaces of
the layer (Fig. 2). In this case we have the boundary conditions

Ty = iy, Tyz = lgy 0, = + ¢
-— 1
-,f.. -- for z.—:j:—i—h (51)
O——t————%
_I_ : . Introducing concise designations
—I—~t
q Al = l):‘l [Sl (OL + ﬁsl2) Sln SIZD 'Fl '+'
ZF. \ 4 s, (@ + Bsa?) sin 5,2D - F,y) (5.2)
& B, = — D (s;sin 5;2D - F, + s,sin s,zD - F,)

we put the formulas for stresses and displace-
ments in the following form

Gx == — 266162 Sin SOZD 'q)o, + Al + 2002231
0, = 2G3,0, sin s,zD -9, + A, + 2G6,*B, (5.3)
g, = — D3? [s, (a; — B,5,%) sin 8;2D -F; + s, (@, — B;5,%) sin 82D -Fy]
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Ty = G (0, — 98,%) sin 542D -@y" — 2G3,0,B,
Tey = — G5,0,D cos 542D -y + 8,D% [(a + Ps,?) cos s;2D-Fy + (5.4)
+ (a 4 Bs,?) cos s,2D - F,] (5.5)
= (1,80, D cos 542D -@," + 9,D* [(¢x + Bs,?) cos s;2D - F; +
4+ (a 4 Bs,?) cos 52D F,]

tyz

U =z ag sin SOZD ’@0, — aIBl
v = 0y sin 52D @y’ — 9,8,
w = D? [{y — 8s,®) cos 52D -F; + (v — 85,?) cos s,2D - F,}

Satisfying the boundary conditions (5.1), we obtain a system of equa-
tions for the unknown functions, ¢,’, I';, F,, which we solve in exactly
the same manner as in the case of extensmn contraction; as a result, all
the quantities will .be expressed in terms of the three stress functions,

which satisfy the equations
Q: = (% » Obe= 'é::" v Qs = C_;ql_ (5.8)
Here
Q. = Dcos %~ "h [(s1 + 85) sin (s, — s3) %2 — (8, — 5;) sin (s, + §3) ’—‘2-1-)] (5.7)

The final form of the formulas will be

@ = — mcoggohD /2 (O3ps — O1pa) (5.:8)
G
Fi{=— 7.;—: cos 2. [82( — B1Se (31'\1’1 + Oae) +

+ (x + Bsy?) D cos ssz P }

F2 == - COS 5 [81 (C(l - 51322) i (611191 + a2\p2) +
e ) Deon 2 %J

6. Particular cases of bending. In the problem of bending we
also can point out two particular cases which lead to considerable

simplifications.

Case 1. 3ending by a normal load.
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Let t;, = t,. Then we can set y, =y, = 0 and introduce a new stress
function

P = cos s°hD APg (6.1)

The function y satisfies the equation

. hD . D
D [(31 + 85 8in (81 — 82) 5~ — (81— $2) sin (81 + $3) hT] Y= Gi (6.2)
In this case ¢, = 0

Gln Glﬂ

F,=— = («+ Bs; )cosfh—gxp, F, s (o + Bs,?) cos 5P (6.3)

Case 2. The surfaces are subjected to tangential forces which have a
potential

g =0, ty = 04y, ty = Oyt (6.4)
In this case ¢, = 0
G hD
F1=—‘%n32( —51322)5111322 V*
G sihD (6.5)
F2 == *})ﬁsl (0(1—[3181 )Sln 12 "p

For the function y* we get the Equation (6.2) in which q = t.

7. The homogeneous solutions and the problem of equilibrium
of a thick plate of finite dimensions. The solutions of the equa-
tions, which are satisfied by the stress functions when the loads on the
planes z = * h/2,are absent, are called the homogeneous solutions. Using
the homogeneous solutions one can obtain the stress distribution and dis-
placements in a thick plate of finite dimensions, whose plane surfaces
are subjected to an arbitrary load, which can always be broken up into a
symmetric and a skew-symmetric part with respect to the middle plane.

Setting in (3.12) and (5.6) p =71, =71, =0and g=1t, =¢t, =0, we
obtain for the functions x, and y, the homogeneous linear equations of
infinitely high order, corresponding to the form of the operators Q and
Q,. However, if the conditions on the lateral surface (i.e. on the edge)
are not satisfied exactly, and if, instead, we require that only the
averaged or integral conditions be satisfied, as in the theory of thin
plates, then it is sufficient to take for y, and y, the particular solu-
tions of the Equations (3.12) and (5.6), namely the biharmonic functions.

The derivation of the formulas for the stresses and displacements,
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which correspond to the homogeneous solutions, is completely analogous
to the derivation for an isotropic layer [1, pp.202-205], and hence we
are not going to dwell on it here.

A) A symmetrical stress distribution. Taking the functions x, to be
biharmonic, we obtain at any point

Tee = Ty =0, =0 (7.1)

Let us introduce a new biharmonic function F(x, y), setting

(7.2)

. . F __ B—WE[G —8vw,
It =0Xe = — SETE A AT s = DEvi(er s (L —v) SoF

Thus we arrive at the well-known formulas which describe the state of
plane stress of a transversely isotropic plate [5]

x — azzFl, O'u = 612F1, Txy = - 6162F1 (7.3)

where
}t2
Fi=F + ww)( — 2*) D*F (7.4)

B) A skew-symmetrical stress distribution. We may set ¢y =y, =0 and
consider the function y to be biharmonic.

Let us introduce a new biharmonic function wy, related to y in the
following way

E [ h? (20

Y= 2G 15153 (5% — 528) (1 — V3 + §(I—v) ”2> Dg"f‘)] (7.9)

Then we obtain the well-known relations 15), which are valid for
bending

U == — 26121)1, P T e z@zwl. W = w, -+ 322—(117:2-‘*;}-D2U{0 (78)

Here w, is the deflection of the middle plane

— w, + WT{Z:W[H ~(1— (;15’2) ]Dawo (1.7)

We will not state the formulas for the stresses. In order to solve
the problem of equilibrium for a plate of finite dimensions, we should
first of all decompose the loading into a symmetric and a skew-symmetric
part and determine the corresponding functions x, and y, for an infinite
layer. After that we find the forces and displacements which occur on
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the lateral surface, and then superimpose the homogeneous solutions of
the types A and B, choosing them in such a manner that the necessary
averaged (integral) conditions are satisfied on the lateral surface (on
the edge).

In this formulation each of the two problems A and B is reduced to the
determination of a function, biharmonic in the domain of the plate.

8. The particular solutions of the equations for the stress
functions. Let us consider the cases in which only normal loads p and
q are acting on the plane surfaces, and let us look into some special
cases of loading. The stress functions y and y satisfy the following
equations:

the problem of extension-contraction

D [(s1 + 8y) sin(s; — $q) }}—?- + ($1 — $3) sin (s; + $3) %l—)-] ¥ = g—l (8.1)

the problem of bending
. A . hD
D [(31 + $2) sin (s; — $2) 5T (51— sp) sin {8y -+ $2) ‘g’] Yy = g;' (8.2)

If the layer is isotropic (s, = s, = 1) then the Equations (8.1) and
(8.2) must be replaced by different ones |1, pp.155-157]

D*(1 4 ”Zﬁ”) x=2, D1— S‘;‘D"D) b= g (8.3)

The question of finding the particular solutions of the equations for
the isotropic layer has been treated in suffi- y
cient detail in Lur’e’s book [1]. ~—q«4v5,

In this connection, all the arguments re- § QS§?5 \§s z

. . . a——
lated to the isotropic layer can be applied, € <§>\
. . 2 \
without any essential changes, to the case of ¥
a transversely isotropic layer, and therefore z
we can here limit ourselves to outlining the P

solutions for the two most typical cases of

loading. {wI-[~~I“I“1p

]

1. The loading is a polyharmenic function zh 0 z
of the coordinates z, y, i.e. it satisfies ciataay
the equation Fig. 3.

D™p =0 or D™ =0 (8.4)

In this case x is an n + 1 - harmonic function and y is an
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n + 2 - harmonic.

In particular, if p and q are polynomials of the power n with respect
to x and y, then y is a polynomial of the power n + 2, and y is a poly-
nomial of the power n + 4. In looking for y and y in the form of poly-
nomials of respective powers with indeterminate coefficients, we compare
the terms on the left- and right-hand sides. Thus, for the coefficients
we obtain equations whose number is lower than the number of the unknowns.
Consequently, some of the coefficients may be chosen arbitrarily, for in-
stance, they may be set equal to zero.

2. The loading satisfies the equation of free vibrations of a membrane,

D= —m?*p or D= —miy (m = const) (8.5)

The functions x and y are defined in the form

4 P
X= Gim (51 -+ Sg)sinh{(s) — S2) mh [ 2] <+ (s, — s3)sinb{(5; + 83) mh [ 2] (8'6)
b=— o : 8.7

Gim (51 + $a)sinh[(sy — s9) mh [ 2] — (51 — $a) sinh [(8, + 52) mh [ 2]

Example. An infinite transversely isotropic layer of thickness h/2
rests on a smooth, perfectly rigid foundation and is compressed by a
normal load, distributed on its upper surface (Fig. 3).

Suppose that the friction on the contact surface is negligibly small,
i.e.

1.,=1,,=0, w=0 whenz=290 (8.8)

xz yz

Then the solution of this problem will be identical to the solution
for a layer of thickness h, subjected on both sides to given forces, sym-
metrical with respect to the middle plane.

Let us assume that the loading can be represented by a Fourier integral

200
p= S \ Q (2, B) cos ax cos By dad3 (8.9)
o
where
0 OO
= 3—3—13 S P cos af cos BndE dn (8.10)
00



1038 S.G. Lekhnitskii

The producg cos az cos Py, obviously, satisfies the Equation (8.5),
where n = (a® + 52), and hence X is given by the formula obtained from
(8.6) by performing the summation, i.e. integration

N L‘ioiog_ cos az cos By
L= — Gy 3 m sy -+ 82} sinh[(sl'— Sg) mh/z] + (s —‘_32)lii\h[(81+82) mh/z} do dB (8‘11)

Let, for instance, the compressive loading be uniformly distributed on
the area of a rectangle whose sides are 2e,, 252. Designating the result-
ant of that loading by P, we have

P
P=—lfee (8.12)

inside the rectangle, and p = 0 at other points. Thus we obtain

Q=

- Wsin ae; sin Jeq (8.13)

Letting €, and €y tend to zero (at constant P), we obtain the solution
for the case of a concentrated load applied at the origin
(8.14)

_ P wmi cos az cos By
% "nzclg S 7 o1 L sy sk [ (51 — 52) mh [ 2] + (51 — sy b [ (51 + s2) i 1 2] 2> 9B
[ Y]

As in the corresponding case of an isotropic layer [1, p.175], the
integral (8.14) diverges as n2, Since the denominator becomes equal to
zero for = = 0; however, the stresses and displacements, found by means
of the function Y from the Formulas (4.3}, (3.3), (3.4) and (3.5) are
expressed by convergent integrals.
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